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Abstract

Evaluating large language models (LLMs) is a
critical yet challenging task due to the open-ended
nature of their outputs. While human evaluation
remains the gold standard, its cost and scalability
limitations have driven increased reliance on auto-
mated LLM-based assessments. In this work, we
introduce In-Context Quality Scoring (ICQS), a
novel method that leverages structured in-context
learning to rank language model outputs with min-
imal supervision. By framing the evaluation pro-
cess as an approximation of Bayesian posterior
inference, ICQS efficiently estimates the qual-
ity of LLM-generated outputs without relying
on extensive labeled data. We demonstrate that
ICQS exhibits semantic generalization, surpass-
ing standard in-context learning and LLM verbal-
ized scoring baselines in quality ranking. ICQS’
epistemic variant further enhances stability and
consistency. Empirical results on diverse eval-
uation benchmarks–sentiment analysis, natural
language inference, and creative writing–validate
ICQS as an effective and scalable solution for
LLM evaluation.

1. Introduction
Evaluation plays a critical role in machine learning, serving
as a key element in both model development and selection.
This is especially true in the era of large language models
(LLMs), where model architectures have become increas-
ingly homogeneous, making evaluation—including both
quantitative benchmarks and qualitative assessments—a cen-
tral driver in developing more capable and aligned models.
However, evaluating LLMs presents unique challenges, pri-
marily due to the open-ended nature of their outputs. While
human evaluation remains the gold standard, its high cost
and time-intensive nature limit its scalability in fast-paced
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development environments. As a result, advanced LLMs
like ChatGPT have increasingly been used as viable alter-
natives to human annotators (Zheng et al., 2023), alongside
web-based information retrieval.

In-context learning (ICL) (Brown, 2020; Garg et al., 2022;
Fu et al., 2023; Lee et al., 2024; Wies et al., 2024; Agarwal
et al., 2024) is a remarkable phenomenon that has emerged
in transformer models with billions of parameters. Without
modifying model weights, large transformers such as LLMs
can adapt to new downstream tasks in a training-free man-
ner by incorporating prefix demonstration examples directly
into their inputs. ICL has demonstrated its effectiveness
across various applications, including uncertainty quantifi-
cation (Hou et al., 2023; Tanneru et al., 2024; Yadkori et al.,
2024; Liu et al., 2024a), jailbreak scenarios (Wei et al.,
2023), reinforcement learning (Lee et al., 2024; Kirsch et al.,
2023; Dai et al., 2024; Grigsby et al., 2023), and imitation
learning (Sridhar et al., 2024; Raparthy et al., 2023).

In this work, we propose a general quality scoring method
based on in-context learning (ICL), designed for scenarios
where no external information, such as retrieval, is available.
Our method is able to evaluate a given set of answers by
ranking their quality, requiring only a few in-context ex-
amples. This lightweight approach makes it applicable to
a wide range of tasks without reliance on additional data
labelers. Moreover, our method demonstrates strong gener-
alization capabilities, both in terms of semantic understand-
ing and across different tasks. This approach highlights a
promising application of ICL, providing a novel avenue for
evaluating language model generations.

Several prior studies have examined the learnability (Wies
et al., 2024) and theoretical behavior (Falck et al., 2024)
of ICL, often framing it as an (approximate) Bayesian in-
ference problem. In this view, ICL is typically interpreted
as inferring latent structure from observed examples, akin
to Bayesian posterior updating. However, recent work by
(Bigelow et al., 2023) suggests that the dynamics of ICL
align more closely with model selection rather than model
averaging, indicating that ICL tends to favor a single hypoth-
esis consistent with the observed data rather than integrating
multiple possible explanations. This observation provides
a simplified modeling of in-context learning and helps us
simplify our framework.
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Figure 1. Framework of In-Context Quality Scoring (ICQS), which consists of: (1) constructing M in-context demonstration sets with
varying mixture ratios from Zg ∪ Zb; (2) conditioning an ICL base model Pbase on each set to form M induced distributions Pj ; (3)
computing the log-likelihood of the evaluation instance under each Pj ; (4) selecting the distribution Pk that maximizes likelihood and
assigning its mixture ratio rk as the final quality score.

Furthermore, (Liu et al., 2024b) investigates the geometric
properties of in-context learning and verifies that Llama-
series LLMs follow structured, low-dimensional semantic
trajectories. Their findings provide a formal characterization
of the geometric structure underlying in-context learning-
induced probabilities. This suggests that ICL models con-
structed with different configurations (e.g., size, mixture
ratios) of ICEs differ mainly in semantic quality rather than
in irrelevant noise. We leverage this observation for con-
structing in-context hypothesis space in Bayesian inference.

Several LLM evaluation benchmarks have been developed
to assess LLM performance, particularly in terms of align-
ment with human preferences. Compared to traditional
ground truth-based NLP datasets, these benchmarks focus
on evaluating how well models align with human judgment,
especially in tasks involving free-form generation. A re-
cent trend involves leveraging GPT-4 as a proxy for human
judgment, as demonstrated by notable benchmarks such as

MT-Bench (Zheng et al., 2023) and AlpacaEval (Li et al.,
2023). On the other hand, Chatbot Arena (Chiang et al.,
2024) stands out as the first open, large-scale, crowdsourced
benchmark platform that utilizes real-time human interac-
tion for evaluation. This shift toward more dynamic and
interactive evaluation methods facilitates more effective and
scalable human-aligned assessments in model development.

In this paper, we frame the evaluation of language mod-
eling as measuring the distance between a probabilistic
model of interest and the underlying ground truth distri-
bution of natural language. However, traditional statistical
metrics, such as KL divergence, are often computationally
intensive for complex probabilistic models used in natural
language processing and typically require large amounts
of labeled ground truth data. To address this, we propose
In-Context Quality Scoring (ICQS), which leverages struc-
tural in-context learning to derive tractable, representative
heuristic statistics.
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Unlike traditional i.i.d. sampling of good in-context exam-
ples, our structural method samples in-context demonstra-
tions from a mixture of high- and low-quality examples in
varying proportions, thereby creating a hypothesis space of
projected probabilistic distributions across different quality
levels. In this way, a generation’s quality can be captured
by the most likely hypothesis within this space—which is
effectively reflected by the quality of the chosen demonstra-
tions (Xie et al., 2022). Due to the inherent randomness
of in-context learning, ICQS naturally favors aggregated
evaluation, making it well-suited for tasks such as LLM
evaluation across multiple questions. Additionally, we ex-
tend ICQS with an epistemic enhancement to mitigate the
variance introduced by in-context example selection, ensur-
ing more stable performance. We call this ICQS-Epistemic.
ICQS enables quality rankings that align better with human
preference while requiring only a few labeled in-context
examples. Furthermore, it demonstrates promising semantic
and task generalization capabilities, making it an effective
tool for evaluating large language models. Our contributions
are outlined as follows.

Contributions We introduce In-Context Quality Scoring
(ICQS), a novel method for automatically evaluating lan-
guage model quality that leverages structural in-context
learning. We demonstrate its effectiveness across diverse
tasks, including sentiment analysis, fine-grained natural lan-
guage inference, and creative writing within the LMSYS
benchmark. Our results indicate ICQS’ quality ranking
aligns better with human preference, compared to standard
in-context learning and verbalized LLM scoring (Zheng
et al., 2023). Further, ICQS with an epistemic enhance-
ment ensures notable stability. In addition, our results high-
light the semantic generalization properties of structured in-
context learning, showing how mixed in-context examples
from the extremes form the complete intermediate spectrum
of in-context models with varying quality.

2. Problem Formulation
We address the general problem of evaluating the quality
of specific language model generations. For a task Q, we
define two probability distributions: Pg , representing the de-
sired ”good” distribution of correct or high-quality outputs,
and Pb, representing the undesired ”bad” language distri-
bution, both aligned with human natural language. For ex-
ample, Pg may correspond to a set of gold-standard ground
truth labels, while Pb includes undesired outputs, such as
flipped answers in classification tasks or creative writing
samples that fail to adhere to the given instructions.

Consider a probabilistic model of interest with distribution
Pz , such as a large language model (LLM). We sample
responses z ∼ Pz , and and seek to evaluate their quality

effectively.

Definition 2.1 (α-Quality Distribution). Let (Ω,F) be a
measurable space, and let P(Ω) denote the space of all
probability measures defined on (Ω,F). Consider a metric

d : P(Ω)× P(Ω)→ R≥0

that measures the distance between probability distributions.
Let the distance between the two predefined extreme distri-
butions Pb ∈ P(Ω) and Pg ∈ P(Ω) be denoted by

D = d(Pb, Pg).

For any distribution Pz ∈ P(Ω), we say that Pz is an α-
quality distribution if for a scalar α ∈ [0, 1],

d(Pb, Pz) = αD.

In this formulation, We quantify the quality of Pz using a
scalar α ∈ [0, 1] such that:

• α = 1 corresponds to the highest-quality distribution
(Pz = Pg).

• α = 0 corresponds to the lowest-quality distribution
(Pz = Pb).

• Intermediate values of α represent distributions of vary-
ing quality between Pb and Pg, where d(Pb, Pz) mea-
sures how close Pz is to the high-quality distribution
Pg .

Formally, our objective is to construct a quality scoring func-
tion r(z) for responses z such that it preserves the ordering
of α under some reasonable distance metrics d. That is,
for any two distributions Pz1 and Pz2 with corresponding
quality parameters α1 and α2, we require:

α1 ≥ α2 ⇒ r(z1) ≥ r(z2).

Secondly, we aim to achieve this ranking while relying on a
limited number of labeled examples. In practice, we do not
have direct access to Pg and Pb but instead observe small
sample sets:

Zg = {zgi ∼ Pg | i = 1, . . . ,m},
Zb = {zbi ∼ Pb | i = 1, . . . , n}.

In this way, we estimate α empirically by constructing a
rank-preserving function r. The challenge is to design r(z)
so that it effectively ranks responses while leveraging the
limited labeled data available and generalizing beyond it.

3. In-Context Quality Scoring
In this section, we describe our approach to designing the
quality scoring function r. Classical probabilistic distances,
such as KL divergence, are computationally expensive (Yad-
kori et al., 2024), making the direct estimation of α infeasi-
ble without a large amount of ground truth labeling.
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To address this challenge, we propose using the in-context
sample mixture ratio as a proxy for constructing r. In-
tuitively, we first present the quality evaluation problem,
which estimates how much a generating distribution dif-
fers from the extreme distributions (Pg, Pb). We then show
that this problem can be approximately formulated as a in-
context mixture ratio problem under the Bayesian inference
framework. In the following sections, we will systemati-
cally demonstrate why this approach could be a plausible
solution. The validity of the proposed mixture ratio will be
verified through empirical experiments.

3.1. In-Context Learning as Bayesian Inference

Recent work (Falck et al., 2024; Bigelow et al., 2023) has
framed in-context learning as Bayesian inference over the
probabilistic space. Given in-context examples z1:N and
a new sample z, the predictive distribution p(z|z1:N ) fol-
lows a Bayesian posterior predictive distribution over the
probability space Pα = {Pα : d(Pb, ·) = αD}:

p(z|z1:N ) =

∫
α∈[0,1]

p(z|Pα)p(Pα|z1:N )dα. (1)

This formulation suggests that in-context learning implicitly
performs Bayesian inference within Pα by averaging over
possible model parameters.

Interestingly, (Bigelow et al., 2023) provided evidence that
ICL on large transformers often perform Bayesian model
selection rather than model averaging. That is, instead of
marginalizing over α, they tend to select a single latent
parameter that best explains the observed context:

Pα0
= argmax

α
p(Pα|z1:N ), p(z|z1:N ) = p(z|Pα0

).

(2)
We adopt Eq. (2) in our framework for its simplicity, allow-
ing us to estimate a single α0 that best represents the quality
of Pz .

3.2. α as the Oracle Quality

We define the oracle quality α based on the performance
risk (Wei et al., 2023), which quantifies the effectiveness of
a model Pα. Given a prompt x ∼ Q, the expected reward
(e.g. quality)R of a model P is given by:

RP (x) = Ey∼P (·|x)R(y).

For z = (x, az) collected from model Pz , we approximate
its quality by considering its likelihood under a proxy model
space Pαj

∈ Pα, realized via a finite set of in-context
samples {zj1:N}Mj=1. By Bayes’ rule:

p(Pαj |z) ∝ p(z | Pαj )p(Pαj ).

Thus, we estimate P̂z as:

P̂z = argmax
j

p(z | Pαj ), (3)

Algorithm 1 ICQS: In-context quality scoring for a single
evaluation sequence z using base LLM Pbase given sets of
good and bad answers Zg,Zb.

1: function ICQS(Zg,Zb, Pbase, z)
2: for j ∈ {0, 1, . . . ,M} do
3: rj ← j

M
4: Pj ← ConstructICLModel(Zg,Zb, rj) {Obtain

an in-context learned model using mixed demon-
stration sets.}

5: Compute ℓj ← logPj(ŷ | x) {Compute the like-
lihood of the j-th model generating the answer
ŷ.}

6: end for
7: k ← argmink ℓk(x, ŷ) {Find the most likely ICL

model}
8: Output rk {Return its sampling ratio as the score.}
9: end function

10: function ConstructICLModel(Zg,Zb, rj)
11: Sampling in-context examples with mixed ratio:
12: for i ∈ {1, . . . , N} do
13: zji ∼ Zg with probability 1− rj , else zji ∼ Zb

14: end for
15: Pj ← Pbase[z

j
1:N ]

16: Output Pj

17: end function

with the corresponding αj0 providing the best likelihood
estimate of z. By definition, the probabilistic distance is:

d(Pb, Pz) = sup
x∼Q
|RPb

(x)−RPz
(x)| = αj0D. (4)

3.3. Mixed Sampling Ratio Preserves the Order of α

To realizable the models in the hypothesis space, we con-
struct candidate model distributions using different sampling
ratios from Zb ∪ Zg . The in-context sampling ratio r0 then
serves as a proxy for quality metrics.

Formally, assume in-context examples are drawn as:

ICEr = {x1, y1, . . . , xN , yN | (xi, yi) ∼ rPg+(1−r)Pb}.

Under reasonable assumptions from (Wei et al., 2023) (Sec-
tion E), we derive:

|RPα(x) −RPb
(x)| = |RP ([ICEr, x])−RPb

(x)|

≤ C · Pg([ICEr, x])

Pb([ICEr, x])
= αD.

Now, denote sample sets:

Sg = {i | (yi, xi)
i.i.d.∼ Zg}, Sb = {i | (yi, xi)

i.i.d.∼ Zb}.

Then, there exists some constant ∆ > 1 such that for all i ∈
Sg, we have Pg(yi|xi)

Pb(yi|xi)
> ∆. By expanding the likelihood
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ratio:

Pg([ICEr, x])

Pb([ICEr, x])
∝

k∏
i=1

Pg(yi | xi)

Pb(yi | xi)
(5)

=
∏
i∈Sg

Pg(yi | xi)

Pb(yi | xi)
·
∏
i∈Sb

Pg(yi | xi)

Pb(yi | xi)
.

Thus, for two different sampling ratios ri > rj , we obtain:

αi

αj
=

Pg([ICEri , x])

Pb([ICEri , x])

/
Pg([ICErj , x])

Pb([ICErj , x])

=
∏

i∈Sgi
\Sgj

Pg(yi | xi)

Pb(yi | xi)

/ ∏
i∈Sbj

\Sbi

Pg(yi | xi)

Pb(yi | xi)

> ∆|Sgi
\Sgj

| > 1.

This result implies that ri ≥ rj ⇐⇒ αi ≥ αj .

Thus, the ordering of r preserves the ordering of α, making
it a valid quality score.
Remark 3.1. In sample-mixed LLM in-context learning, the
sampling ratio r serves as an effective approximate statistic
for model quality evaluation.

3.4. Overall Algorithm

We apply an ICL base model Pbase for the evaluation. We
then construct N in-context examples from the dataset Zg ∪
Zb using a mixture ratio rj , forming the sets {zj1:N} for
j = 1, . . . ,M .1

Next, we use the M sets to create M distributions condi-
tioning on Pbase denoted as

Pj := Pbase[z
j
1, ..., z

j
N ].

For z = (x, ŷ), we compute the log likelihood

ℓj(x, ŷ) = logPj(ŷ | x).

Finally, we find Pk that obtains the maximum likelihood,
where k = argmaxk ℓk(x, ŷ). In this case, we assign rk as
the score of the eval sequence z. The details of the ICQS
algorithm are formally outlined in Algorithm 1.

4. Epistemic In-Context Quality Scoring
In the previous section, we introduced the ICQS method
based on the recent in-context learning theories. However, in
practice, the performance of in-context learning can exhibit
significant variance across different demonstration sets. This
inherent randomness can degrade the effectiveness of the
ICQS method.

1One may question the number of mixture ratios M required
to obtain reliable results. We discuss this further in Appendix D.

Algorithm 2 ICQS-Epistemic: In-context quality scoring
with epistemic uncertainty mitigation.

1: function ICQS-Epistemic(Zg,Zb, Pbase, z, L)
2: for j ∈ {0, 1, . . . ,M} do
3: rj ← j

M
4: Iterate over L different demonstration sets:
5: for l ∈ {1, . . . , L} do
6: P l

j ← ConstructICLModel(Zg,Zb, rj)
7: Compute ℓlj ← logP l

j(ŷ | x)
8: end for
9: Compute epistemic-smoothed score:

ℓ̄j ← 1
L

∑L
l=1 ℓ

l
j

10: end for
11: k ← argmaxk ℓ̄k(x, ŷ) {Obtain quality score on the

epistemic likelihood.}
12: Output rk
13: end function

In particular, the likelihood should be decomposed into two
components: the epistemic component that captures the
model’s inherent uncertainty in generating specific answers,
and aleatoric components, which arises from variability due
to different demonstration set selections. To address this
issue, we propose an epistemic-enhanced version of our
algorithm following a previous work in ICL uncertainty
decomposition (Ling et al., 2024).

4.1. Uncertainty Decomposition of In-context Learning

In ICL, the predictive distribution for generating ŷ given
a set of few-shot demonstrations z1:N and a test input x
can be denoted as: p(ŷ | Θ, z1:N , x), where we explicitly
denote the base model parameters as Θ.

Let ℓ(Θ) = P (ŷ | x, z1:N ,Θ) represents the overall likeli-
hood of the predictive distribution. To estimate the epistemic
component, we condition on a fixed base model, effectively
omitting Θ as ℓ = p(ŷ | z1:N , x). The expectation of ℓ
over L set of demonstrations then serves as a metric for the
epistemic components of the likelihood.

Formally, (Ling et al., 2024) constructs a matrix M ∈
R|Y|×L for close-form tasks with |Y| predefined answer
options. The epistemic component is estimated as:

EU =
1

L

∑
l

P (σ(M:,l)),

where σ(·) denotes the softmax function, and M:,l repre-
sents the l-th column of the matrix M . This approximation
encapsulates the variability introduced by different demon-
stration configurations.
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4.2. ICQS Epistemic Approximation

In the ICQS setting, we generate M sets of mixed in-context
examples (ICE) with varying mixture ratios rj , denoted as
zj1:N , j = 1, . . . ,M . Specifically, each set zj1:N with ratio
the rj undergoes an ICL epistemic decomposition process.
In this way, for each rj , we proceed L independent iterations
of ICE sampling from Zg ∪ Zb, acquiring matrix M j for
epistemic estimation.

For the open-ended generation tasks, we estimate the epis-
temic component by direct averaging of the logit values
over L iterations. A comprehensive breakdown of ICQS-
Epistemic algorithm is provided in Algorithm 2.

5. Experiments
5.1. Experimental Setup

We study the performance of our proposed method on four
natural language question-answering tasks: sentiment anal-
ysis (SST-2 (Socher et al., 2013), Financial-PhraseBank
(Malo et al., 2014)), fine-grained natural language inference
(ChaosNLI (Nie et al., 2020)), and creative writing (LMSYS
Jokes (Zheng et al., 2024)). We compare our method with
two baselines that also do not rely on information retrieval
or iterative search:

• Verbalized LLM Evaluation (or LLM-as-a-judge
(Zheng et al., 2023)): where we directly request a
verbalized rating or the predicted labelings from the
base LLM.

• In-context learning: where we apply naive in-context
learning on the base model, then evaluate on the the
predicted labelings.

Next, we briefly describe our problem domains. The tasks
are presented in increasing order of difficulty.

• Sentiment Analysis (SST-2): Binary sentiment clas-
sification on sentences extracted from movie reviews.
Task: Evaluate the semantic accuracy of the sentiment.
Data: (sentence, label) pairs. Metric: Accuracy with
respect to the ground-truth sentiment class. Base LM:
LLaMA-2-7B-8bit (Touvron et al., 2023). Format:
{x : movie review, y : sentiment}. This dataset is
mainly used in primary verification for its simplicity.

• Sentiment Analysis (Financial-PhraseBank or FB):
Polar sentiment classification of sentences from finan-
cial news, predicting their influence on the financial
market. Task: Evaluate the semantic accuracy of the
sentiment. Data: (sentence, label) pairs. Metric: Sen-
timent distance with respect to the ground-truth sen-
timent class. Base LM: LLaMA-2-7B-8bit. Format:
{x : financial news, y : sentiment}.

FB LMSYS ChaosNLI
Tasks
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Figure 2. Overall comparison of ICQS and baseline methods across
tasks and metric scores. We present the best performance of each
method across tasks.

• Creative Writing (LMSYS Jokes): Generate creative
writings based on human requests for jokes. Task:
We filter a subset of the LMSYS dataset in which
the prompt includes “joke”. Evaluate LLM’s gener-
ation performance by aggregating human preference
scores. Data: A tuple of (question, model a answer,
model b answer, winner). Metric: Relative rank-
ings of all models involved in the LMSYS leader-
board. Base LM: LLaMA-3-70B (Dubey et al., 2024)
. Format: {x : question, A : model a answer;B :
model b answer, y : winner}.

• Natural Language Inference (ChaosNLI): A fine-
grained NLI problem that compares model distribution
outputs with human label distributions. Task: Predict
distributional labels by evaluating the quality of the
hypothesis. Data: A tuple of (premise, hypothesis,
percentage of contradiction, neutral, and entailment ϕ).
Metric: Mean Absolute Error (MAE) and relative rank-
ing on the labeling distributions. Base LM: LLaMA-3-
70B. Format: {x : premise, y : hypothesis}.

For all tasks, fewer than 60 good/bad examples were pro-
vided, from which we independently sample in-context ex-
amples. All examples belong to the two extreme ground-
truth labels (e.g., positive and negative). To evaluate the
semantic generalization properties of ICQS, we introduce
additional quality categories in the test set, such as the neu-
tral category in sentiment analysis.2 We provide prompt
examples in Appendix C.

Is r a valid statistic for estimating the quality of the
answers? First, we verify the connection between the
sampling ratio r and quality. The experiments are con-
ducted with synthetic labels on two sentiment analysis

2For the ChaosNLI dataset, we provide polarity-labeled exam-
ples but evaluate on all distributional-labeled examples. For the
LMSYS benchmark, we include the tie category in the test set.
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(a) ICQS successfully recovered the ground truth ranking of the
binary scoring. Left: Ground truth accuracy of the four LLMs.
Right: ICQS prediction scores for the four LLMs, along with the
trend across different demonstration sizes.
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LLMs. Right: ICQS prediction scores for the four LLMs, along
with the trend across different demonstration sizes.

Figure 3. ICQS perfectly recovered the ground truth ranking of LLMs on the financial phrasebank dataset.

datasets—SST-2 and Financial Phrasebank.

We provide the results in Appendix A. In particular, Fig-
ures 5-6 illustrate the connection between r and extreme-
quality answers. Figure 7-8 demonstrates ICQS’s semantic
generalization ability for middle-quality answers. Moreover,
Table 4 presents quantitative results on quality accuracy,
showing that ICQS outperforms baseline methods as a gen-
eral quality scoring approach.

Can this performance be scaled to real LLM genera-
tions and complex tasks? Next, we aim to extend our
evaluation to real-world quality assessment across different
tasks. Based on Figure 2, we answer this question in the
affirmative. Figure 2 shows an overall comparison of ICQS
and baseline methods across tasks. Across different evalua-
tion and metrics, we observe that ICQS (and its epistemic
variant) consistently outperforms the baselines. We provide
detailed results and discussions in the following paragraphs.

Can ICQS evaluate real LLM generations? We extend
our experiments in the financial sentiment analysis task from
synthetic label quality ranking to real LLM quality rank-
ing. Four real LLMs are evaluated: Falcon-7B, Falcon-7B-
Instruct, LLaMA-13B-8bit, and LLaMA-2-13B-8bit, each
generating responses for 30 Financial PhraseBank ques-
tions. In this part, we define quality based on the exact label
matching score (see an example in the following table).

GT Label Prediction Score
Positive Positive 1
Positive Neutral or Negative 0

The results in Figure 3a demonstrate that ICQS perfectly
recovers the ground truth accuracy ranking of the four mod-
els.

Beyond label accuracy: can ICQS capture semantic qual-
ities? In practice, answer quality is rarely binary. Instead,
people assess quality based on semantic discrepancy, as-
signing a semantic quality score. Therefore, we follow the

previous setting but introduce a semantic quality scoring
system for the answers (see the following table).

GT Label Prediction Score
Positive Positive 1
Positive Neutral 0.5
Positive Negative 0

Figure 3b shows that ICQS successfully recovers the ground
truth LLM ranking under the semantic quality scores. No-
tably, we observe that the ranking of LLaMA-13B-8bit and
Falcon-7B is flipped when switching to the semantic score,
a change that is also perfectly captured by ICQS.

Can ICQS reflect human preferences on the noisy crowd-
sourced LMSYS benchmark? Pre-collected datasets are
typically carefully processed. However, we are particu-
larly interested in cases where there is insufficient labeled
data for ground truth evaluation. The LMSYS benchmark
serves as a good example, as it is a crowdsourced dataset
containing noisy human prompts and preferences. Specifi-
cally, we applied our method to the creative writing subset
of the LMSYS dataset—joke generation. This task is not
only open-ended but also implicitly exhibits varying quality
levels.

We extracted all joke-related questions from LMSYS, con-
sisting of 480 samples with responses from 57 LLMs. We
then split the dataset into 60 ICE sets and a 420-sample test
set.

Due to the large number of LLMs, obtaining a perfect rank-
ing is infeasible. Therefore, we apply a quantitative metric
to evaluate model rankings: Spearman’s rank correlation:

rs = 1− 6
∑

d2i
n (n2 − 1)

. (6)

Table 1 demonstrates that ICQS achieves an improved qual-
ity ranking of the models compared to ICL. The complete
ranking list (of the 57 LLMs) output by ICQS, the ICL base-
line, along with the ground truth from the LMSYS dataset
is provided in Table 5 in Appendix B.
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Figure 4. ICQS achieves higher spearman’s r for quality ranking.

Table 1. Comparison of Spearman’s r for LMSYS dataset.
Spearman’s r ↑
ICL ICQS ICQS-Epistemic

Spearman’s r ↑ 0.305 0.486 0.480

Can ICQS maintain good performance on open-form
generations? Finally, we demonstrate that ICQS has
the potential to produce fine-grained distributional scoring
for complex open-form generations, such as those in the
ChaosNLI dataset. ChaosNLI is a natural language infer-
ence dataset that gives distributional labeling of entailment
(E), neutral (N), and contradiction (C). A typical ground-
truth label ϕ might be E 21%, N 12%, and C 67%, reflecting
the varied human interpretations in each category. Our goal
is to recover the distributional labels with ICQS. We ran-
domly sample a test set of 60 samples.

We evaluate our performance on three metrics. 1) The Mean
Absolute Error (MAE) as

∣∣∣ϕ− ϕ̂
∣∣∣
1
, 2) the cross-entropy

(CE) as−
∑n

i=1 ϕ
i log(ϕ̂i), and 3) the Spearman correlation

as defined in Equation (6)3.

Table 2. Best performance of ICQS, ICQS-Epistemic and ICL on
different metrics, on the ChaosNLI dataset.

MAE ↓ CE ↓ Spearman’s r ↑
Ask LLM NA NA NA
ICL 0.333 0.525 -0.12
ICQS 0.246 0.372 0.245
ICQS-Epistemic 0.240 0.371 0.336

We present the performance curves, against number of ICEs,
of ICQS and baseline results, for the spearman’s coefficient
metric in Figure 4b and for the MAE/CE metrics in Fig-
ures 10, 11 in Appendix G. For all three metrics, ICQS
consistently outperforms ICL, as ICL fails to capture the
distributional labeling. We summarize the best results in

3Unlike previous experiments where we ranked individual la-
bels, this time we rank the quality of the entire hypothesis sentence.

Table 2. Additionally, we provide the recovered average
distribution for ICQS’s best-performing ICE numbers. The
results demonstrate that ICQS effectively recovers the dis-
tribution of each majority category, indicating its capability
to learn the true semantic meaning.

Table 3. ICQS is able to reproduce the label prediction with 8 ICEs.
Sample’s top label Average Scores

E [0.393 0.322 0.286]
N [0.275 0.372 0.352]
C [0.266 0.284 0.450]

How does ICQS progress with the number of in-context
examples? Figures 4a and 4b both show the trend of ICQS
performance with respect to the number of in-context exam-
ples. ICQS and ICQS-Epistemic outperform ICL, especially
with a higher number of ICEs. Overall, ICQS performance
gradually improves but may plateau or fluctuate after ex-
ceeding a certain number of ICEs, similar to ICL. Among
all methods, ICQS-Epistemic achieves the most stable per-
formance.

Is epistemic ICQS a stable improvement over ICQS?
Yes, results across all tasks (see Figures 4a, 4b,10, 11)
demonstrate that epistemic ICQS enhances the stability of
ICQS, making it more practically useful.

6. Conclusion
In this paper, we introduce a general method for quality
scoring of language generations that is efficient in terms of
LLM evaluation requirements. Our approach applies to a
wide range of probabilistic discrepancy evaluation problems,
including the assessment of large language models (LLMs).
The core idea is to construct a representative quality ranking
function, r, based on structured in-context learning with a
mixture of demonstrations of varying quality. We validate
the effectiveness of our method through experiments on sen-
timent analysis, LMSYS model ranking, and fine-grained
labeling tasks. These results validate the effectiveness of our
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approach and provide insights into the structural properties
of in-context learning, particularly its semantic generaliza-
tion capability. Our findings suggest exploring semantically
structured demonstrations as a potential direction for fur-
ther investigating the statistical performance of in-context
learning.

A limitation of our work is the challenge of achieving stable
improvements as the number of prompts increases, due to
the discrete nature of in-context learning.

7. Impact Statement
The proposed method for evaluating large language models
(LLMs) contributes to the development of more reliable,
transparent, and fair AI systems. By providing a rigor-
ous and systematic evaluation framework, our approach
enhances the ability to assess model performance across
diverse tasks, mitigating biases and improving generaliza-
tion. This can lead to better decision-making in high-stakes
applications such as healthcare, legal analysis, and content
moderation. Our work may have various societal implica-
tions, but none that require specific emphasis here.
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Liu, T. J., Boullé, N., Sarfati, R., and Earls, C. J. Density esti-
mation with llms: a geometric investigation of in-context
learning trajectories. arXiv preprint arXiv:2410.05218,
2024b.

Malo, P., Sinha, A., Korhonen, P., Wallenius, J., and Takala,
P. Good debt or bad debt: Detecting semantic orientations
in economic texts. Journal of the Association for Infor-
mation Science and Technology, 65(4):782–796, 2014.

Nie, Y., Zhou, X., and Bansal, M. What can we learn from
collective human opinions on natural language inference
data? In Proceedings of the 2020 Conference on Empiri-
cal Methods in Natural Language Processing (EMNLP).
Association for Computational Linguistics, 2020.

Raparthy, S. C., Hambro, E., Kirk, R., Henaff, M., and
Raileanu, R. Generalization to new sequential decision
making tasks with in-context learning. arXiv preprint
arXiv:2312.03801, 2023.

Socher, R., Perelygin, A., Wu, J., Chuang, J., Manning,
C. D., Ng, A. Y., and Potts, C. Recursive deep models for
semantic compositionality over a sentiment treebank. In
Proceedings of the 2013 conference on empirical methods
in natural language processing, pp. 1631–1642, 2013.

Sridhar, K., Dutta, S., Jayaraman, D., and Lee, I. Re-
gent: A retrieval-augmented generalist agent that can
act in-context in new environments. arXiv preprint
arXiv:2412.04759, 2024.

Tanneru, S. H., Agarwal, C., and Lakkaraju, H. Quantifying
uncertainty in natural language explanations of large lan-
guage models. In International Conference on Artificial
Intelligence and Statistics, pp. 1072–1080. PMLR, 2024.

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi,
A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P.,
Bhosale, S., et al. Llama 2: Open foundation and fine-
tuned chat models. arXiv preprint arXiv:2307.09288,
2023.

Wei, Z., Wang, Y., and Wang, Y. Jailbreak and guard aligned
language models with only few in-context demonstrations.
arXiv preprint arXiv:2310.06387, 2023.

Wies, N., Levine, Y., and Shashua, A. The learnability
of in-context learning. Advances in Neural Information
Processing Systems, 36, 2024.

Xie, S. M., Raghunathan, A., Liang, P., and Ma, T. An ex-
planation of in-context learning as implicit bayesian infer-
ence. In International Conference on Learning Represen-
tations (ICLR), 2022. URL https://arxiv.org/
abs/2111.02080.

Yadkori, Y. A., Kuzborskij, I., György, A., and Szepesvári,
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A. Primary Verification
In this section, we evaluate the effectiveness of our proposed method along with its semantic generalization ability. All
experiments are conducted using the base model LLaMA-2-7B-8bit with at most 30 in-context examples (ICE).

Correct labels⇒ r = 1. For correct evaluation sequences (i.e., correctly labeled sentiment), ICQS assigns a quality score
of 1, as the r = 1 curve is positioned at the top.

(a) SST-2 sentiment analysis (b) Financial PhraseBank.

Figure 5. Since the log-likelihood of the r = 1 mixture ICE model is the highest, we assign r = 1 as the quality score for the evaluation
sequences. Likelihoods are averaged over 30 samples.

Incorrect labels⇒ r = 0 For incorrect evaluation sequences (i.e., those with wrongly labeled sentiment), ICQS assigns a
score of r = 0 to the evaluation sequences.

(a) SST2 sentiment analysis (b) Financial phrasebank

Figure 6. Since the log likelihood of the r = 0 mixture ICE model is on top, we assign r = 0 as the quality score of the eval sequences.
Likelihood are averaged over 30 samples.

Semantic generalization ability Next, we investigate the semantic generalization ability of ICQS, an emerging property
observed in our experiments. Despite being provided with only positive and negative sentences and their corresponding
labels in the in-context examples (ICEs), ICQS is able to assign appropriate scores to unseen neutral sentences and neutral
labels. Moreover, ICQS can generalize to labelings that use synonyms, demonstrating its generalization ability.

Figure 7 shows that ICQS assigns scores ranging from 0.75 to 1 for unseen neutral sentences. Table 4 demonstrates that
ICQS achieves the best overall performance when dealing with correctly and incorrectly labeled positive and negative
samples, neutrally labeled positive and negative samples, and semantically neutral examples.
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Figure 7. Financial phrasebank. Base model is condi-
tioned on neg/pos sentences; but test on neutral sen-
tences.

Table 4. Quantitative results on financial phrasebank dataset.
In-context prompts are all neg/pos examples.

Accuracy on Ask LLM ICL ICQS
Correct 85% 100% 100%

Incorrect 48.67% 96.7% 96.7%
Labeled neutral 100% 0 80.0%

Semantic neutral 46.7% 0 67.7%

Moreover, ICQS can accurately score unseen synonymous sentiment labels. As shown in Figure 8, ICQS assigns the correct
quality score of r = 1 to the evaluation sequences. These results further validate the semantic generalization ability of ICQS
in scoring.

(a) SST2 sentiment analysis (b) Financial phrasebank

Figure 8. ICQS Synonym Scoring: The ICE labels are negative/positive, with SST-2 labels as bad/good and FB labels as sad/happy.
Despite these variations, ICQS assigns a quality score of r = 1 to the evaluation sequences, demonstrating its robust synonym handling
capability.

B. Leaderboard
We present the complete model rankings for the LMSYS joke subset in Table 5.
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Table 5. Full LMSYS joke ranking. Tie models are in the same grid.
Ground Truth ICQS ICL

tripedhyena-nous-7b
stablelm-tuned-alpha-7b
llama2-70b-steerlm-chat

chatglm3-6b
gpt-3.5-turbo-0314

palm-2
gpt4all-13b-snoozy

pplx-70b-online
tulu-2-dpo-70b

gpt-4-1106-preview
vicuna-33b

llama-2-70b-chat
llama-2-13b-chat

starling-lm-7b-alpha
codellama-34b-instruct

gemini-pro
dolly-v2-12b
gpt-4-0314

gpt-3.5-turbo-0613
claude-2.1
claude-1

gpt-3.5-turbo-1106
guanaco-33b

openhermes-2.5-mistral-7b
qwen1.5-72b-chat

fastchat-t5-3b
mpt-30b-chat

oasst-pythia-12b
zephyr-7b-alpha

vicuna-7b
gpt-4-0613

mistral-medium
alpaca-13b

zephyr-7b-beta
wizardlm-13b

claude-instant-1
solar-10.7b-instruct-v1.0
deepseek-llm-67b-chat

koala-13b
openchat-3.5

RWKV-4-Raven-14B
pplx-7b-online

vicuna-13b
mpt-7b-chat

gemini-pro-dev-api
claude-2.0

wizardlm-70b
chatglm-6b

mixtral-8x7b-instruct-v0.1
mistral-7b-instruct

yi-34b-chat
llama-2-7b-chat

chatglm2-6b
gpt-3.5-turbo-0125

qwen-14b-chat
llama-13b

gpt-4-0125-preview

mpt-30b-chat
qwen1.5-72b-chat
zephyr-7b-alpha

stablelm-tuned-alpha-7b
wizardlm-70b

llama2-70b-steerlm-chat
llama-2-13b-chat

gemini-pro
oasst-pythia-12b

vicuna-7b
mistral-medium

gpt-4-1106-preview
claude-1

dolly-v2-12b
starling-lm-7b-alpha

qwen-14b-chat
chatglm3-6b

zephyr-7b-beta
alpaca-13b

palm-2
gpt-4-0314
vicuna-33b

gpt-3.5-turbo-0314
tulu-2-dpo-70b

stripedhyena-nous-7b
chatglm-6b

gpt-3.5-turbo-0613
llama-2-70b-chat

claude-2.1
openchat-3.5

gpt-3.5-turbo-1106
mixtral-8x7b-instruct-v0.1

claude-instant-1
codellama-34b-instruct

gpt-4-0613
fastchat-t5-3b

pplx-70b-online
mistral-7b-instruct

solar-10.7b-instruct-v1.0
pplx-7b-online
llama-2-7b-chat

RWKV-4-Raven-14B
claude-2.0
vicuna-13b

deepseek-llm-67b-chat
koala-13b

wizardlm-13b
yi-34b-chat
chatglm2-6b

llama-13b
gemini-pro-dev-api

mpt-7b-chat
gpt-3.5-turbo-0125

openhermes-2.5-mistral-7b
gpt4all-13b-snoozy

guanaco-33b
gpt-4-0125-preview

gpt-4-0125-preview
mpt-30b-chat

llama2-70b-steerlm-chat
openhermes-2.5-mistral-7b

wizardlm-13b
wizardlm-70b

stablelm-tuned-alpha-7b
solar-10.7b-instruct-v1.0

gpt-4-1106-preview
mistral-medium
llama-2-13b-chat
oasst-pythia-12b

dolly-v2-12b
mpt-7b-chat

gpt-3.5-turbo-0314
claude-1

gemini-pro
gpt-4-0314

chatglm3-6b
vicuna-33b

RWKV-4-Raven-14B
llama-2-70b-chat

gpt4all-13b-snoozy
fastchat-t5-3b

zephyr-7b-alpha
stripedhyena-nous-7b

gpt-3.5-turbo-0613
codellama-34b-instruct

zephyr-7b-beta
gpt-3.5-turbo-1106

claude-instant-1
chatglm-6b

pplx-7b-online
gpt-4-0613
alpaca-13b

mixtral-8x7b-instruct-v0.1
mistral-7b-instruct

starling-lm-7b-alpha
claude-2.0

tulu-2-dpo-70b
claude-2.1

deepseek-llm-67b-chat
palm-2

vicuna-13b
yi-34b-chat

llama-2-7b-chat
koala-13b

openchat-3.5
vicuna-7b

qwen-14b-chat
pplx-70b-online

gemini-pro-dev-api
gpt-3.5-turbo-0125

guanaco-33b
llama-13b

chatglm2-6b
qwen1.5-72b-chat
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C. Prompt templates
We follow the prompt template of (Zheng et al., 2024) for the ask LLM baseline.

1 [Instruction]
2 Please act as an impartial judge and evaluate the quality of the response provided by an

AI assistant to the user question displayed below. Please rate the correctness of the
response on a scale of 1 to 5, where 1 means incorrect and 5 means correct. Do not
explain your evaluation.

3 [Question]
4 Is the sentiment of the following sentence ‘negative‘, ‘neutral‘, or ‘positive‘: Finnish

construction company YIT Oyj said on November 13 , 2007 it won a 70 mln euro $ 102.8
mln contract to construct the new office building for local property company Tapiola
Real Estate Oy .

5 Respond with ‘negative‘, ‘neutral‘, or ‘positive‘.
6 [The Start of Assistant’s Answer]
7 neutral
8 [The End of Assistant’s Answer]
9 Rating:

Listing 1. Prompt template for financial phrasebank LLM evaluation.

1 Sentence: The pretax profit of the group ’s life insurance business increased to EUR36m
from EUR27m.

2 Answer: Positive.

Listing 2. In-context template for financial phrasebank LLM evaluation.

1 model_a: llama-2-13b-chat
2 model_b: gpt-4-0613
3 prompt: "tell me a joke containing Tiger and Mobile phone?"
4 response_a: "Sure, here’s a joke for you:\n\nWhy did the tiger take his mobile phone to

the party?\n\nBecause he heard it was a paw-some way to meet new people!\n\n(Get it?
Paw-some? Like \"awesome\" but with \"paw\" because it’s a tiger? Okay, maybe it’s not
that funny... but I hope it made you smile!)"

5 response_b: "Why don’t tigers use mobile phones? \n\nBecause they’re afraid they might
press the \"paws\" button too often!"

6 winner: 1

Listing 3. Example format of LMSYS dataset

1 Premise: uh-huh and is it true i mean is it um.
2 Hypothesis: It is absolutely correct.

Listing 4. Example format of ChaosNLI dataset

D. Discussion on Scoring Granularity
One possible concern with our algorithm may be its computational complexity, as we require different ratios r of in-context
sampling for finer scoring. Interestingly, some recent research (Kalai & Vempala, 2024) shows that large models should
favor a more concentrated distribution of score likelihood to mitigate hallucination (Figure 9).
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Figure 9. GPT-4 calibration curves before (left) and after (right) reinforcement learning. (Achiam et al., 2023; Kalai & Vempala, 2024)
revealed the fact that in order to avoid hallucination, LLMs should obtain answer distributions akin the right figure.

E. Assumptions from (Wei et al., 2023)
We follow the similar weak assumptions to (Wei et al., 2023) in our framework. For self-containment, we list the assumptions
below.

Assumption E.1 (Independence on requests). For any question ∀x ∼ Q and its prefix prompt p∗, we have Pb(x | p∗) =
Pg(x | p∗). This assumes that the probability of each question is the same for the two distributions.

Assumption E.2 (Robustness of a single distribution). For any demonstration set ICEr and request x, we have Pb(y |
[ICEr, x]) = Pb(y | x) and Pg(y | [ICEr, x]) = Pg(y | x). The distribution Pb (or Pg) is robust to context; that is, the
output of the current question is unaffected by the preceding conversation.

Assumption E.3 (Distinguishability between the distributions). There exists ∆ > 0 such that for any ∀(x, y) ∼ Pg . Then,
Pg(y|x)
Pb(y|x) > ∆. Similarly is for any ∀(x, y) ∼ Pb, Pb(y|x)

Pg(y|x) > ∆.

Next, we provide the proof of Eq. (5) from Wei et al. (2023, Proof for Theorem 4.5).

Proof of Eq. (5). For k ICEs {(xi, yi) ∼ Pz}ki=1 and a new test case x ∼ Q, note that

Pg([x1, y1, · · · , xk, yk, x])

Pb([x1, y1, · · · , xk, yk, x])

=
Pg(x | [x1, y1, · · · , xk, yk])

Pb(x | [x1, y1, · · · , xk, yk])
· Pg([x1, y1, · · · , xk, yk])

Pb([x1, y1, · · · , xk, yk])

=
Pg([x1, y1, · · · , xk, yk])

Pb([x1, y1, · · · , xk, yk])
(Assumption E.1)

=
Pg(yk | [x1, y1, · · · , xk])

Pb(yk | [x1, y1, · · · , xk])
· Pg([x1, y1, · · · , xk])

Pb([x1, y1, · · · , xk])

=
Pg(yk | xk)

Pb(yk | xk)
· Pg([x1, y1, · · · , xk])

Pb([x1, y1, · · · , xk])
(Assumption E.2)

=
Pg(yk | xk)

Pb(yk | xk)
· Pg(xk | [x1, y1, · · · , xk−1, yk−1])

Pb(xk | [x1, y1, · · · , xk−1, yk−1])
· Pg([x1, y1, · · · , xk−1, yk−1])

Pb([x1, y1, · · · , xk−1, yk−1])
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=
Pg(yk | xk)

Pb(yk | xk)
· Pg([x1, y1, · · · , xk−1, yk−1])

Pb([x1, y1, · · · , xk−1, yk−1])
(Assumption E.1)

=
Pg(yk | xk)

Pb(yk | xk)
· Pg(yk−1 | xk−1)

Pb(yk−1 | xk−1)
· Pg([x1, y1, · · · , xk−2, yk−2])

Pb([x1, y1, · · · , xk−2, yk−2])

= · · ·

=

k∏
i=1

Pg(yi | xi)

Pb(yi | xi)

F. Discussions on LLM-as-a-Judge Baselines
There are multiple baselines for the LLM-as-a-Judge task. For example, the AlpacaEval (Li et al., 2023; Dubois et al., 2024)
and WILDBENCH (Lin et al., 2024) mainly provide coarse datasets that mimic Chatbot Arena (Chiang et al., 2024) to
evaluate the overall performance of LLMs. The difficulty in comparing these two papers with our algorithm is that ICL
is specifically designed for task-wise settings. In this case, it is not straightforward for us to adapt the AlpacaEval and
WILDBENCH datasets into task-specific subsets.
On the other hand, the two PROMETHEUS works (Kim et al., 2023; 2024) trained evaluators specifically for fine-grained
evaluation tasks using a large number ( 20k) of human annotations. It is not very fair to compare those evaluators with our
ICQS method, which requires fewer than 100 examples and no fine-grained human annotations.

G. Additional Results on the ChaosNLI Dataset
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Figure 10. ICL, ICQS and ICQS-Epistemic cross en-
tropy results ↓.
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Figure 11. ICL, ICQS and ICQS-Epistemic MAE re-
sults ↓.
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