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Abstract. Accurately predicting visual field progression is critical for
early intervention and personalized treatment of glaucoma. However, ex-
isting methods struggle with both predictive accuracy and reliable uncer-
tainty quantification. This paper introduces a framework that leverages
diffusion models and conformal risk control to generate robust and inter-
pretable forecasts of visual field deterioration. We first train a diffusion
model to predict future visual fields based on a patient’s past examina-
tions. To ensure trustworthy predictions, we design a novel archetypal-
based conformal risk control method, which provides finite-sample cov-
erage guarantees on intervals of archetypal contributions. This frame-
work captures the underlying structures within uncertainty, enabling
clinicians to interpret a range of potential progression patterns rather
than a single deterministic outcome. Experimental results illustrate that
our method achieves the target archetypal contribution coverage while
providing tighter prediction intervals than baselines. Visualizations show
how archetypal visual field patterns contribute to prediction uncertainty,
offering interpretable insights into disease progression. By combining dif-
fusion models with conformal methods, our framework enhances the
reliability of Al-assisted visual field forecasting, ultimately supporting
improved clinical decision-making. Our code is available at: https://
github.com/averysi224/abci.git.
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1 Introduction

Glaucoma is projected to affect over 100 million people worldwide by 2040 [21].
Caused by optic nerve damage, it can lead to irreversible functional vision loss
and significantly impacts quality of life. Visual function in glaucoma patients
is assessed through visual field (VF) tests, which provide differential light sen-
sitivity at different points on the retina. For instance, a 24-2 VF test records
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sensitivity in decibels (dB) across 54 points within the central 24 degrees of vi-
sion. These values form a grayscale image, where darker areas indicate worse
sensitivity. Fig. [I] in Section [3] illustrates a case where the patient’s future VF
shows defects in the lower hemisphere.

Predicting visual field progression is crucial for glaucoma interventions but is
challenging due to limited clinical consensus on the disease’s pathology [14]. To
assist clinicians, various methods have been proposed. Linear regression has been
used to predict individual points [I8] and the mean deviation (MD) metric [10],
but this assumes linear progression over time, and MD does not capture spatial
patterns. Deep learning approaches, including a variational autoencoder [5], a
diffusion model [22], recurrent network [19], and convolutional model [24] have
instead been used for predicting full VFs. However, existing deep learning meth-
ods do not incorporate clinical knowledge of archetypal vision loss patterns,
which provide insight into patient quality of life (e.g., highly impactful on vision
and quality of life), reveal structural changes in the eye [8], and help estimate
rates of VF progression [16]. Moreover, deep learning models can fail to identify
patients with worsening visual fields despite low overall prediction error [9].

Conformal inference [II2IT5I23] provides a statistical framework for quan-
tifying prediction uncertainty with finite-sample guarantees. While extensively
studied, its application to the image generation domain remains limited. The
pixel-wise method im2im-uq [3] fails to capture spatial patterns, producing un-
informative uncertainty bounds. Conffusion [I1] uses quantile regression [I3] to
obtain quantile diffusion models as heuristic uncertainty intervals. However, its
plausibility relies on a high-quality score network, which is hardly achievable
with noisy medical datasets. PUQ [4] improves upon these methods by applying
principal component analysis to the posterior uncertainty, yielding tighter inter-
vals. All these approaches follow a risk-controlling paradigm [2] to ensure joint
coverage under high-dimensional pixel dependencies.

Aiming to overcome these limitations, we propose Archetype Based Confor-
mal Intervals (ABCI), a framework for reliable and clinically interpretable VF
prediction that leverages diffusion models and uncertainty quantification of pre-
dicted archetypal loss patterns. We first use a diffusion model to predict VF
progression. Diffusion models excel at modeling images, surpassing variational
autoencoders and generative adversarial networks [7J20]. As probabilistic meth-
ods, they also capture the uncertainties inherent in the visual field data. We
then apply a novel archetype-based conformal method to derive confidence in-
tervals for significant archetype contributions to prediction uncertainty. These
intervals offer marginal coverage guarantees, ensuring two key properties with
high probability: first, the most significant archetypes contributing to prediction
uncertainty are determined with low error, and second, their contributions to the
future visual field are reliably estimated. Ours is the only approach that pro-
vides joint rigorous guarantees on the selection of significant archetypes and the
estimation of their contributions to future VF. In practice, this offers clinicians
a reliable range of patterns within which the future VF is expected to fall.
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We validate our method on two real-world VF datasets: the University of
Washington Humphrey Visual Field (UWHVF) dataset [I7] and the Glaucoma
Research Network (GRN) dataset. We compare it against two conformal base-
lines: pixel-wise conformal prediction (im2im-uq) [3] and principal uncertainty
quantification (PUQ) []. Unlike the baseline methods, ABCI is the only ap-
proach that provides clinically interpretable and reliable visual field progression
predictions. By enabling accurate risk assessment and actionable clinical insights,
ABCI is well-suited for computer-aided glaucoma treatment.

2 Background and Problem Definition

In this section, we provide a brief but necessary overview of archetypal analysis
and conformal risk control. The formal problem formulation follows.

2.1 Archetypal Patterns of Vision Loss

Visual fields are recorded as d measured points (e.g., d = 52 for 24-2 VFs,
excluding the blindspot). Given VF records D C R?, archetypal analysis [6]
identifies the extremal patterns of the data, located on the boundaries of the
convex hull of D. Although derived mathematically, these archetypes align with
clinically recognized loss patterns [§].

Given the fixed archetype matrix constructed from p archetypes of D,

A= [v,v2,...,0p] e R¥*P, (1)

any r € can pe reconstructe Oobtalnin e coellicient vector s € W1
v D b tructed by obtaining th flicient vect RY ) with

P, s; =1 that minimizes the residual sum of squares, min, ||z — As||%.

2.2 Conformal Risk Control (CRC)

CRC is a form of conformal inference that controls general risk metrics beyond
standard coverage guarantees. For any covariate z, CRC additionally enforces
constraints on a pre-defined risk function E(:z:, y), such as mis-coverage or pre-
diction error, while maintaining statistical validity: Pr(E[L(z,y)] < a) > 1 — 4,
where « is the target risk level, and ¢ is the failure probability.

2.3 Problem Formulation

Formally, let X, C R represent the spaces of existing and future VF records,
respectively, and let 7 denote the space of time spans between two records.
Define an observation as o = (x,t), where x € X is the current visual field and
t € T is the prediction time span of interest. Denote P, , as the joint probability
distribution over (X x T) x Y. Assume a diffusion model mapping (X x T) — Y
and a fixed matrix A € R?*P of p archetypal patterns are given.

Given an observation o = (x,t), we aim to quantify the uncertainty of its VF
progression prediction, as characterized by the posterior distribution estimated
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Fig. 1. Overview of ABCIL. a) At inference time, VF predictions are sampled from
the diffusion model. Given «, 8, and d, with probability 1 — §, conformal risk control
estimates the most significant archetypes contributing to the future VF and intervals
on these contributions. b) The intervals reliably include the ground-truth archetype
contributions. The clinician can trust that the future VF will lie within this interval.
¢) The clinician can trust that the predicted most significant archetypes accurately
represent the uncertainties in future VF loss patterns.

by the diffusion model, Py|o. Rather than defining intervals over individual pixels,
we construct an interval-valued function C(0; A(0)) on archetypal contributions
to the future VF, where A(0) = A ® 7(0) and 7(0) is a binary selection mask
predicting the most significant archetypes contributing to uncertainty. For sim-
plicity, we denote /1(0) as A in the following demonstration.

Given a user-specified o € (0,1) and the ground-truth output y € ), the
interval C(o; /1) should contain the projected ground-truth archetypal contribu-
tions with probability at least 1 — «, while ensuring the correctness of m,

o Z ﬂ{v?yeC(o;A)i} >1—oa. (2)

A

3 Methodology

In this section, we present our Archetype Based Conformal Intervals (ABCI)
method for constructing intervals with joint rigorous guarantees on both archety-
pal contributions to the ground truth and the selection of high-contributing
archetypal patterns of progression uncertainty. Fig. [I|summarizes our approach.
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3.1 Visual Field Prediction

First, we train a diffusion model If’y‘o on a training set with (o,y) pairs. We
build upon the previous state-of-the-art [22] in visual field prediction, employing
a diffusion model with a transformer backbone to predict a patient’s future
visual field from a single past observation. Crucially, we introduce the input of
the prediction horizon, encoded via sinusoidal positional embeddings.

3.2 Conformal Risk Control for Archetype Contributions

We use the trained diffusion model I:’y‘o as the score function. Building on this
fixed diffusion model, we construct C(o; A) on the hold-out calibration set as

Cx (03 As) 1= [T (o) = Al(o)i,  vT'is(0) + (o) (3)

Here, ji(0) is the average prediction, and A € RT is a tunable parameter that
scales the model-predicted uncertainty, (o) and I(0).

The interval must satisfy two statistical constraints. First, we ensure that
our selection mask 7 (0; A1) identifies key archetypal patterns that capture the
essence of uncertainty. Denote y. = y — [i(0) as the centered ground-truth VF,
and n as the sampling size for each o, we control the reconstruction error:

Ll(o, Y; >\1) = Qq ({|gc(0) - Z/c‘i}?:1) ) (4)

I T
where g, = A (AT A ATy, is the archetypal reconstruction of y., with the

corrections for non-orthogonality. This ensures that the conditionally selected
archetypes recover more than ¢ percent of the ground-truth value in y,.

Specifically, we define the model uncertainty as . = § — ji(o). For each o, we
compute the normalized archetypal weights w as:

52(0),...,62(o a
11)(0):[ (0) . p( )], where (}i(o):UiTQc, C:ZAJZ(O),

serving as scores indicating the predicted significance. To highlight the high-
contributing archetypes, we reorder {v;} in non-increasing order of their weights
to {v(;)}. Then, the mask of A is constructed by adjusting A, (Eq. ) to include
the top K archetypal patterns with high predicted significance:

k
(o \)i =1, for 1< (i) <K; K=minqk| > o) >N
(=1

We then control the coverage risk Lo for these archetypal patterns, where Ay €
R* represents the calibration factor parameter:

La(o,gihihe) = ———— S 1{0:(0)"y ¢ Cry(0: )i} (5)

‘m(O; )\1)| i s.t. m;(0)=1



6 W. Si et al.

Given a user-specified acceptable miscoverage rate «, a reconstruction error
range (3, and desired confidence level 1—§, A; and A; are selected as the extreme
values that jointly satisfy the following coverage and reconstruction guarantee:

E[L1(0,y;21)]<B
Pr (E[L[z(z(’y;gm;\)z])}ﬁa) z1-o (6)

In practice, since selecting high-contributing archetypes for prediction uncer-
tainty controls the reconstruction risk, these archetypes sufficiently represent
the patterns in the ground-truth visual progression uncertainty.

4 Experiments

Datasets. We verify the validity of our framework on two 24-2 visual field
datasets, the UWHVF [17] and GRN datasets. The open-source UWHVF dataset
contains 28,943 24-2 HVF tests from 3,871 patients and 7,428 eyes. The GRN
dataset has 602,000 24-2 visual fields from 129,000 patients. This study adheres
to the Declaration of Helsinki.

Evaluation Setup. For each dataset, we uniformly sample 3,000 visual field pairs
and categorize them into three subgroups based on Hodapp-Parrish-Anders-on
(HPA) mean deviation (MD): Mild (MD > -6 dB), Moderate (-12 dB < MD <
-6 dB), and Severe (MD < -12 dB). We specify miscoverage rates a = 0.25, 0.3,
and 0.4, splitting each subgroup into calibration and test sets in a 4:1 ratio. For
all the experiments, we set ¢ = 0.9 ~ 0.95, and § = 0.1. To demonstrate the
robustness of our method, we do not fix the random seed.

Evaluation Metrics. We measured the accuracy of our diffusion model using
Mean Absolute Error (MAE) in decibels (dB). For evaluating ABCI, we compute
the empirical coverage and the average interval size on the test set. A valid
method obtains coverage error less than «, while smaller interval size is preferred.

Archetypal Analysis and Diffusion Model. We use 17 precomputed visual field
archetypes [8], verified to align with OHTS clinical classifications [I2]. Our dif-
fusion model is trained on UWHVF for 20 epochs (batch size 64, learning rate
10~%) and on GRN for 10 epochs (batch size 5, learning rate 10~%), following [22].

5 Results

On the UWHVF dataset, our horizon-conditioned diffusion model achieved a 3.20
dB MAE, reducing error by over 50% compared to the 6.78 dB baseline [22]. On
the GRN dataset, which is 20x larger, our model’s 3.71 dB MAE is comparable
to the 3.64 dB baseline. This highlights the effectiveness of horizon conditioning
for smaller datasets. Next, we assess ABCI on these fixed diffusion models.
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Table 1. Quantitative Results on UWHVF Dataset.

ABCI im2im-uq PUQ
Cvrg| # Pixel |[Cvrg Pixel |Cvrg Pixel
B Risk |Comp. | Itvl Size | Risk Itvl Size| Risk Itvl Size
0.25| 0.1 |0.157| 6.53 0.199 |0.192 0.338 [0.437 0.033
Mild 0.3 | 0.1 |0.198| 6.44 0.170 |0.223 0.312 |0.460 0.028
0.4 | 0.1 [0.309| 7.53 0.137 [0.344 0.263 [0.493 0.023
0.25( 0.14 |0.183| 4.17 0.222 |0.173 0.357 [0.358 0.032
Moderate| 0.3 | 0.14 |0.239| 4.27 0.192 |0.208 0.331 [0.369 0.029
0.4 | 0.14 |0.287| 4.08 0.148 |0.307 0.286 [0.390 0.023
0.25]|0.155[0.193| 4.33 0.254 |0.179 0.344 [0.203 0.058
Severe | 0.3 |0.155]|0.217| 4.52 0.245 |0.224 0.313 [0.212 0.049
0.4 |0.155(0.349| 4.51 0.181 |0.325 0.267 [0.233 0.037
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Fig. 2. Qualitative results on the UWHVF dataset. On the left, we present the ground
truth visual field, the bounds predicted by ABCI, and the selected main visual patterns.
On the right, we show the bounds produced by the baseline im2im-uq.

patient

5.1 Results on UWHVF Dataset

We first evaluate ABCI on the UWHVF dataset, with quantitative results pre-
sented in Table[I] ABCI effectively controls coverage risk, maintaining it below «
across all settings. While im2im-uq meets the coverage requirement, its intervals
are overly conservative due to its limited ability to capture visual loss structures.
In contrast, PUQ fails to guarantee archetypal contribution coverage for all mild
cases and most moderate cases.

In Fig. 2| we visualize the two methods that meet the coverage requirement.
ABCI effectively captures visual patterns, making the bounds more informa-
tive. Additionally, the main uncertainty components reflect potential differences
between the diffusion model prediction and the ground-truth progression. In
contrast, im2im-uq produces scattered bounds that lack interpretability.

5.2 Results on GRN Dataset

Next, we evaluate ABCI on the GRN dataset in Table[2] Both ABCI and im2im-
uq achieve coverage guarantees, while PUQ fails. Similarly, ABCI generally pro-
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Table 2. Quantitative Results on GRN Dataset.

ABCI im2im-uq PUQ
Cvrg| # Pixel |[Cvrg Pixel |Cvrg Pixel
Risk |Comp. | Itvl Size | Risk Itvl Size| Risk Itvl Size
0.25( 0.1 |{0.179| 5.88 0.278 [0.192 0.571 |0.429 0.059
Mild 0.3 | 0.1 |0.196| 5.75 0.244 [0.223 0.538 |0.463 0.049
0.4 | 0.1]0.357| 5.92 0.169 [0.344 0.396 [0.495 0.041
0.25[0.15]0.169| 3.91 0.258 [0.173 0.458 |0.297 0.158
Moderate| 0.3 |0.15(0.232| 4.77 0.292 |0.208 0.424 |0.319 0.138
0.4 10.15/0.308| 3.88 0.214 |0.307 0.201 |0.343 0.108
0.25]/0.18|0.210| 2.84 0.171 |0.179 0.712 |0.205 0.176
Severe | 0.3 [0.18(0.245| 2.85 0.159 [0.224 0.679 [0.225 0.149
0.4 {0.18(0.203| 2.71 0.164 [0.325 0.186 |0.248 0.119

Stage «a

plxelwlse
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Fig. 3. Qualitative results on the GRN dataset. On the left, we present the ground truth
visual field, the bounds predicted by ABCI, and the selected main visual patterns. On
the right, we show the bounds produced by the baseline im2im-uq.

patient

duces tighter intervals than im2im-uq. As shown in Fig. [3] im2im-uq’s bounds
lack interpretability. Moreover, these bounds must be clipped to (0,1) to ensure
reasonable values, highlighting its tendency to generate overly biased estimates.

5.3 Cross-Dataset Experiments

The experiments thus far validate ABCI’s effectiveness on two VF datasets. How-
ever, real-world clinical settings may involve diverse patient populations, leading
to distribution shifts that violate conformal inference’s exchangeability assump-
tion. To evaluate ABCI’s practical value, we conduct a cross-dataset stress test.
Due to UWHVEF’s limited size, its diffusion model fails to generalize. Instead, we
use the GRN model for calibration on GRN and testing on UW, and vice versa,
as shown in Table [3] Results demonstrate ABCI’s strong empirical robustness,
maintaining coverage error at or below the target a in most cases.
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Table 3. ABCI cross-dataset coverage risks under different settings.

Set/a/Stage Mild Moderate Severe
Calibration| Test [0.25| 0.3 | 0.4 |0.25| 0.3 | 0.4 |0.25| 0.3 | 0.4
GRN UWHVF|[0.246(0.276|0.407|0.121{0.142{0.220(0.203|0.238|0.315
UWHVF GRN ]0.089(0.135|0.212{0.148{0.209|0.319|0.134|0.181|0.313

6 Conclusion

We propose ABCI, a clinically interpretable and reliable approach to visual field
progression prediction by leveraging diffusion models and conformal risk control.
Unlike existing work, our method explicitly quantifies uncertainties in archetypal
vision loss patterns, providing interpretable support for clinical decision-making.
Evaluations on UWHVF and GRN datasets show ABCI consistently obtains
desired coverage while capturing meaningful vision loss patterns, underscoring
its robustness and practical value in computer-aided clinical intervention.

Acknowledgments. Wenwen Si designed the algorithm of archetype-based conformal
intervals and its implementation; Vivian Lin designed the training process for diffusion
models and its implementation. This study was funded in part by the National Institute
of Health (NIH) (grant number R01 EY037101-02). This work was also supported in
part by a gift from AWS AT to Penn Engineering’s ASSET Center for Trustworthy Al
and also funded by Research to Prevent Blindness.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.

References

1. Angelopoulos, A.N., Bates, S.: A gentle introduction to conformal prediction
and distribution-free uncertainty quantification. arXiv preprint arXiv:2107.07511
(2021)

2. Angelopoulos, A.N.; Bates, S., Fisch, A., Lei, L., Schuster, T.: Conformal risk
control. arXiv preprint arXiv:2208.02814 (2022)

3. Angelopoulos, A.N., Kohli, A.P., Bates, S., Jordan, M.I., Malik, J., Alshaabi, T.,
Upadhyayula, S., Romano, Y.: Image-to-image regression with distribution-free
uncertainty quantification and applications in imaging. In: Proceedings of the 39th
International Conference on Machine Learning. pp. 717-730. PMLR (2022)

4. Belhasin, O., Romano, Y., Freedman, D., Rivlin, E., Elad, M.: Principal uncer-
tainty quantification with spatial correlation for image restoration problems. IEEE
Transactions on Pattern Analysis and Machine Intelligence (2023)

5. Berchuck, S.I., Mukherjee, S., Medeiros, F.A.: Estimating rates of progression and
predicting future visual fields in glaucoma using a deep variational autoencoder.
Scientific Reports 9(1), 18113 (2019)

6. Cutler, A., Breiman, L.: Archetypal analysis. Technometrics 36(4), 338-347 (1994)

7. Dhariwal, P., Nichol, A.: Diffusion models beat gans on image synthesis. Advances
in neural information processing systems 34, 8780-8794 (2021)



10

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

W. Si et al.

Elze, T., Pasquale, L.R., Shen, L.Q., Chen, T.C., Wiggs, J.L., Bex, P.J.: Patterns
of functional vision loss in glaucoma determined with archetypal analysis. Journal
of The Royal Society Interface 12(103), 20141118 (2015)

Eslami, M., Kim, J.A., Zhang, M., Boland, M.V.; Wang, M., Chang, D.S., Elze, T.:
Visual field prediction: evaluating the clinical relevance of deep learning models.
Ophthalmology Science 3(1), 100222 (2023)

Fujino, Y., Murata, H., Mayama, C., Asaoka, R.: Applying “lasso” regression to
predict future visual field progression in glaucoma patients. Investigative ophthal-
mology & visual science 56(4), 2334-2339 (2015)

Horwitz, E., Hoshen, Y.: Conffusion: Confidence intervals for diffusion models.
arXiv preprint arXiv:2211.09795 (2022)

Keltner, J.L., Johnson, C.A., Cello, K.E., Edwards, M.A., Bandermann, S.E., Kass,
M.A., Gordon, M.O., Group, O.H.T.S., et al.: Classification of visual field abnor-
malities in the ocular hypertension treatment study. Archives of Ophthalmology
121(5), 643-650 (2003)

Koenker, R., Bassett Jr, G.: Regression quantiles. Econometrica: journal of the
Econometric Society pp. 33-50 (1978)

Lee, S.S.Y., Mackey, D.A.: Glaucoma-risk factors and current challenges in the
diagnosis of a leading cause of visual impairment. Maturitas 163, 15-22 (2022)
Lei, J., G’Sell, M., Rinaldo, A., Tibshirani, R.J., Wasserman, L.: Distribution-free
predictive inference for regression. Journal of the American Statistical Association
113(523), 1094-1111 (2018)

Liu, J., Sood, S., Razavian, N., Chen, D., Yousefi, S., Elze, T., De Moraes, G.,
Boland, M.V., Wellik, S.R., Pasquale, L.R., et al.: Predicting progression of glau-
coma based on visual field tests. Investigative Ophthalmology & Visual Science
64(8), 335-335 (2023)

Montesano, G., Chen, A., Lu, R., Lee, C.S., Lee, A.Y.: Uwhvf: a real-world, open
source dataset of perimetry tests from the humphrey field analyzer at the university
of washington. Translational Vision Science & Technology 11(1), 2-2 (2022)
Nouri-Mahdavi, K., Hoffman, D., Gaasterland, D., Caprioli, J.: Prediction of visual
field progression in glaucoma. Investigative ophthalmology & visual science 45(12),
4346-4351 (2004)

Park, K., Kim, J., Lee, J.: Visual field prediction using recurrent neural network.
Scientific reports 9(1), 8385 (2019)

Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution
image synthesis with latent diffusion models. In: Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition. pp. 10684-10695 (2022)
Tham, Y.C., Li, X., Wong, T.Y., Quigley, H.A., Aung, T., Cheng, C.Y.: Global
prevalence of glaucoma and projections of glaucoma burden through 2040: a sys-
tematic review and meta-analysis. Ophthalmology 121(11), 2081-2090 (2014)
Tian, Y., Zang, M., Sharma, A., Gu, S.Z., Leshno, A., Thakoor, K.A.: Glaucoma
progression detection and humphrey visual field prediction using discriminative and
generative vision transformers. In: International Workshop on Ophthalmic Medical
Image Analysis. pp. 62-71. Springer (2023)

Vovk, V., Gammerman, A., Shafer, G.: Algorithmic Learning in a Random World,
vol. 29. Springer, Berlin, Germany (2005)

Wen, J.C., Lee, C.S., Keane, P.A., Xiao, S., Rokem, A.S., Chen, P.P., Wu, Y.,
Lee, A.Y.: Forecasting future humphrey visual fields using deep learning. PloS one
14(4), 0214875 (2019)



	Reliable and Interpretable Visual Field Progression Prediction with Diffusion Models and Conformal Risk Control

